2019~2020學(xué)年北師大附屬實(shí)驗(yàn)初三12月月考試卷【附答案】
1、平行四邊形
定義:兩線對邊分別平行的四邊形叫做平行四邊形
性質(zhì):平行四邊形的對邊相等,對角相等,對角線互相平分。
判定:1.兩組對邊分別平行的四邊形是平行四邊形。2.兩組對邊分別相等的四邊形是平行四邊形。
3.一組對邊平行且相等的四邊形是平行四邊形。4.兩條對角線互相平分的四邊形是平行四邊形。
2、特殊四邊形
矩形的定義:有一個(gè)角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。 矩形的性質(zhì):具有平行四邊形的性質(zhì),四個(gè)角都是直角,對角線相等。(矩形是軸對稱圖形,兩條對稱軸) 矩形的判定:1.有一個(gè)內(nèi)角是直角的平行四邊形叫矩形(根據(jù)定義)。
2.對角線相等的平行四邊形是矩形。3.四個(gè)角都相等的四邊形是矩形。 推論:直角三角形斜邊上的中線等于斜邊的一半。 菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。
菱形的性質(zhì):具有平行四邊形的性質(zhì),且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組
對角。菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
菱形的判定:1.一組鄰邊相等的平行四邊形是菱形。2.對角線互相垂直的平行四邊形是菱形。
3.四條邊都相等的四邊形是菱形。
正方形的定義:一組鄰邊相等的矩形叫做正方形。
正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì)。(正方形是軸對稱圖形,有兩條對稱軸) 正方形的判定:1.有一個(gè)內(nèi)角是直角的菱形是正方形;2.鄰邊相等的矩形是正方形;
3.對角線相等的菱形是正方形;4.對角線互相垂直的矩形是正方形。
梯形定義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形。 兩條腰相等的梯形叫做等腰梯形。 一條腰和底垂直的梯形叫做直角梯形。
等腰梯形的性質(zhì):等腰梯形同一底上的兩個(gè)內(nèi)角相等,對角線相等。
等腰梯形的判定:同一底上的兩個(gè)內(nèi)角相等的梯形是等腰梯形。 3、正方形、矩形、菱形和平行邊形四者之間的關(guān)系(如圖3所示): 4、定理:三角形的中位線平行于第三邊,并且等于第三邊的一半。 夾在兩條平行線間的平行線段相等。